Таксационные нормативы для оценки фитомассы лесов с применением компьютерного моделирования как основа устойчивого ведения лесного хозяйства

В.А. Усольцев, д.с.-х.н., профессор, Уральский ГЛТУ, Ботанический сад УрО РАН; **Е.В. Кох**, к.с.-х.н., **В.П. Часовских**, д.т.н., профессор, Уральский ГЛТУ; **А.И. Колтунова**, д.с.-х.н., профессор, Оренбургский ГАУ

В связи с проблемой глобальных климатических изменений приобретает особую актуальность менеджмент биосферных функций лесов, в

частности повышение эффективности принятия решений при оценке фитомассы и углеродного пула лесов с применением современных таксационных нормативов [1]. Для устойчивого управления лесным хозяйством необходимы соответствующие информационные ресурсы [2—4], в число которых входит базовая система таксационных нормативов по учёту лесных ресурсов, традиционно основанная

на таблицах по учёту объёма стволовой древесины, но которая в настоящее время переходит к оценке фитомассы и углеродного пула лесов России на основе современных АТ-технологий.

Цель работы — построение региональных регрессионных моделей и таблиц для оценки структуры фитомассы деревьев лесообразующих пород Евразии.

Материал и методы исследования. Для разработки региональных регрессионных моделей и таблиц фитомассы лесов Евразии из авторской базы данных в количестве 7,3 тыс. модельных деревьев [5]

использованы материалы 7025 деревьев 11 лесообразующих пород с определениями фитомассы стволов, ветвей, хвои (листвы) и корней (табл. 1).

Экорегионы, в которых расположены пробные площади с определениями фитомассы деревьев, закодированы блоковыми фиктивными переменными [6]. Эти фиктивные переменные (dummy variables), введённые затем в уравнение фитомассы дерева наряду с диаметром и высотой ствола, характеризуют степень дистанцирования, или отличия величины фитомассы равновеликих деревьев в каждом экорегионе от исходного (нулевого). Тем

1. Распределение количества модельных деревьев с определениями фитомассы (кг) по видам (родам, подродам) и странам

Род (подрод, вид)	Систематическое название	Страна	Количество модельных деревьев, шт.
Сосна, естественные	Divor- I	Россия, Казахстан, Великобритания, Китай, Швейцария	2048
Сосна, культуры	подрод <i>Pinus</i> L.	Россия, Казахстан, Чехия, Болгария, Япония, Белоруссия, Словакия, Латвия, Ирак	637
Ель	род <i>Picea</i> A.Dietr.	Россия, Германия, Чехия, Болгария, Швейцария, Латвия, Бельгия, Швеция, Италия	1087
Пихта	род <i>Abies</i> Mill.	Россия, Чехия, Япония	180
Лиственница	род <i>Larix</i> Mill.	Россия, Япония, Китай, Чехия, Швейцария, Казахстан, Монголия	522
Кедр	подрод Haploxylon (Koehne) Pilg.	Россия	170
Берёза	род <i>Betula</i> L.	Россия, Северный Казахстан, Япония, Монголия, Китай, Великобритания, Франция, Бельгия, Финляндия, Азербайджан	1291
Осина и тополя	род <i>Populus</i> L.	Россия, Казахстан, Монголия	513
Липа	род <i>Tilia</i> L.	Россия, Чехия, Болгария	389
Дуб	род <i>Quercus</i> L.	Россия, Болгария, Япония, Чехия, Швейцария, Венгрия	130
Ясень Клён	род <i>Fraxinus</i> L. род <i>Acer</i> L.	Россия, Чехия, Китай Россия, Болгария	31 27
	•	Итого	7025

2. Схемы кодирования региональных массивов данных о фитомассе деревьев лесообразующих пород Евразии

2.1. Двухвойные сосны (Pinus sylvestris, P. densiflora, P. nigra, P. tabulaeformis, P. taeda, P. thunbergii)

			`														
Регион]	Блоков:	ые фин	стивны	е пере	менны	e					
Регион	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅	X ₁₆	X ₁₇
СЕш	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CPcp	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
СРюж	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
СРхш	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
СРст	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
ВРсев	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
BPcp	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
ВРст	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
УРюж	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
3Сюж	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
3Слс	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
3Сст	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
ССюж	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
АСлс	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
ДВ	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
КМ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Кит	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
яПш	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

2.2. Лиственницы (L. sibirica, L. cajanderi, L. sukaczewii, L. leptolepis, L. gmelinii, L. olgensis, L. decidua)

Darway				I	5локов:	ые фин	тивны	е пере	менны	e			
Регион	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X ₁₀	X ₁₁	X ₁₂	X ₁₃
СЕш	0	0	0	0	0	0	0	0	0	0	0	0	0
СРхш	1	0	0	0	0	0	0	0	0	0	0	0	0
ВРсев	0	1	0	0	0	0	0	0	0	0	0	0	0
ВРюж	0	0	1	0	0	0	0	0	0	0	0	0	0
ЗСсев	0	0	0	1	0	0	0	0	0	0	0	0	0
ЗСст	0	0	0	0	1	0	0	0	0	0	0	0	0
CCcp	0	0	0	0	0	1	0	0	0	0	0	0	0
АСлс	0	0	0	0	0	0	1	0	0	0	0	0	0
ВСсев	0	0	0	0	0	0	0	1	0	0	0	0	0
ЗБюж	0	0	0	0	0	0	0	0	1	0	0	0	0
ДВсев	0	0	0	0	0	0	0	0	0	1	0	0	0
ДВюж	0	0	0	0	0	0	0	0	0	0	1	0	0
КИТхш	0	0	0	0	0	0	0	0	0	0	0	1	0
яПш	0	0	0	0	0	0	0	0	0	0	0	0	1

2.3. Ели (Picea abies, P. obovata, P. schrenkiana, P. jezoensis, P. purpurea, P. koraiensis)

Darway	Блоковые фиктивные переменные									
Регион	X_1	X_2	X_3	X_4	X_5	X_6	X_7			
СЕш	0	0	0	0	0	0	0			
CP	1	0	0	0	0	0	0			
ВРсев	0	1	0	0	0	0	0			
УРюж	0	0	1	0	0	0	0			
3Слс	0	0	0	1	0	0	0			
ПТ	0	0	0	0	1	0	0			
ДВаян*	0	0	0	0	0	1	0			
Кит	0	0	0	0	0	0	1			

2.4. Пихты (Abies sibirica, A. alba, A. veitchii, A. holophylla, A. nephrolepis, A. firma)

Регион	Блоко	вые фи	ктивные	е переме	нные
Регион	X_1	X_2	X_3	X_4	X_5
СЕш	0	0	0	0	0
УРюж	1	0	0	0	0
AC	0	1	0	0	0
ДВцел*	0	0	1	0	0
ДВцел* ДВбел*	0	0	0	1	0
Кит	0	0	0	0	1

Примечание: *ДВаян — ель аянская; ДВцел — пихта цельнолистная; ДВбел — пихта белокорая

2.5. Кедры (*Pinus* sibirica, P. koraiensis

Регион	Блок фикти перем	ивные
	X_1	X_2
УРюж	0	0
3Слс	1	0
ДВхш	0	1

2.6. Берёзы (Betula alba, B. platyphylla, B. fruticosa, B. costata, B. dahurica, B. ermanii)

Darway				Бло	ковые	фиктин	вные п	еремен	ные			
Регион	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X ₉	X ₁₀	X ₁₁	X ₁₂
CE	0	0	0	0	0	0	0	0	0	0	0	0
CP	1	0	0	0	0	0	0	0	0	0	0	0
BP	0	1	0	0	0	0	0	0	0	0	0	0
УР	0	0	1	0	0	0	0	0	0	0	0	0
3Слс	0	0	0	1	0	0	0	0	0	0	0	0
3Б	0	0	0	0	1	0	0	0	0	0	0	0
ДВсев	0	0	0	0	0	1	0	0	0	0	0	0
ДВплат	0	0	0	0	0	0	1	0	0	0	0	0
ДВжелт	0	0	0	0	0	0	0	1	0	0	0	0
ДВчёрн	0	0	0	0	0	0	0	0	1	0	0	0
КАВ	0	0	0	0	0	0	0	0	0	1	0	0
ЯП	0	0	0	0	0	0	0	0	0	0	1	0
Кит	0	0	0	0	0	0	0	0	0	0	0	1

2.7. Осины и тополя (Populus tremula, P. nigra, P. davidiana) 2.8. Липы (Tilia cordata, T. parvifolia,

D		Блоковые фиктивные переменные										
Регион	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X ₉			
СРср	0	0	0	0	0	0	0	0	0			
СРхш	1	0	0	0	0	0	0	0	0			
СРлс	0	1	0	0	0	0	0	0	0			
BPcp	0	0	1	0	0	0	0	0	0			
УРюж	0	0	0	1	0	0	0	0	0			
3Сюж	0	0	0	0	1	0	0	0	0			
3Сст	0	0	0	0	0	1	0	0	0			
ССюж	0	0	0	0	0	0	1	0	0			
ЗБюж	0	0	0	0	0	0	0	1	0			
ЛВуш	0	0	0	0	0	0	0	0	1			

T. tomentosa, T. amurensis, T. mandshurica)

Darway	Блоковые фиктивные переменные									
Регион	X_1	X_2	X_3	X_4	X_5	X_6				
СЕш	0	0	0	0	0	0				
СРхш	1	0	0	0	0	0				
СРст	0	1	0	0	0	0				
ВРюж	0	0	1	0	0	0				
УРюж	0	0	0	1	0	0				
ДВам* ДВман*	0	0	0	0	1	0				
ДВман*	0	0	0	0	0	1				

Примечание: *ДВам - липа амурская,

ДВман – липа маньчжурская

2.9. Дубы (Quercus robur, Q. rubra, Q. longipes, Q. sessiliflora, Q. frainetto, Q. petraea, Q. mongolica, Q. serrata)

z)											
D	Блоковые фиктивные переменные										
Регион	X ₁	X_2	X ₃	X_4	X ₅	X_6	X ₇	X ₈			
СЕчер*	0	0	0	0	0	0	0	0			
СЕкрас*	1	0	0	0	0	0	0	0			
СЕвар*	0	1	0	0	0	0	0	0			
СЕскал*	0	0	1	0	0	0	0	0			
СЕвенг*	0	0	0	1	0	0	0	0			
СРхш	0	0	0	0	1	0	0	0			
СРст	0										
ДВхш	0	0	0	0	0	0	1	0			
Яп	0	0	0	0	0	0	0	1			

2.10. Ясени (Fraxinus excelsior, F. lanceolata, F. mandshurica)

Danuari	Блоковые	фиктивные п	еременные
Регион	X_1	X_2	X_3
СЕш	0	0	0
СРлс	1	0	0
ВРст	0	1	0
ДВхш	0	0	1

2.11. Клёны (Acer platanoides, A. campestre, A. mandshuricum, A. mono)

Регион	Блоко	овые фиктин	вные переме	нные
Регион	X_1	X_2	X_3	X_4
СЕш	0	0	0	0
СРхш	1	0	0	0
СРст	0	1	0	0
ДВман** ДВмелк**	0	0	1	0
ДВмелк**	0	0	0	1

Примечание: *дубы: СЕчер – черешчатый, СЕкрас – красный, СЕвар – вардимский, СЕскал – скальный, СЕвенг – венгерский; **клёны: ДВман – маньчжурский, ДВмелк – мелколистный; обозначения регионов на схемах кодирования региональных массивов данных (2-12): СЕш - Средне-Европейская провинция, широколиственные леса; СРср — Скандинавско-Русская провинция, средняя тайга; СРюж — Скандинавско-Русская провинция, южная тайга; СРхш – Скандинавско-Русская провинция, хвойно-широколиственные леса; СРш – Скандинавско-Русская провинция, широколиственные леса; СРст – Скандинавско-Русская провинция, степь; ВРсев – Восток Русской равнины, северная тайга; ВРср – Восток Русской равнины, средняя тайга; ВРюж – Восток Русской равнины, южная тайга; ВРш — Восток Русской равнины, широколиственные леса; ВРст — Восток Русской равнины, степь; УРсев — Уральская провинция, северная тайга; УРср — Уральская провинция, средняя тайга; УРюж — Уральская провинция, южная тайга; ЗСср — Западно-Сибирская равнинная провинция, средняя тайга; ЗСюж — Западно-Сибирская равнинная провинция, южная тайга; 3Слс – Западно-Сибирская равнинная провинция, лесостепь; 3Сст – Западно-Сибирская равнинная провинция, степь; ССсев — Средне-Сибирская плоскогорная провинция, северная тайга; ССср – то же, средняя тайга; ССюж – то же, южная тайга; ВСср – Восточно-Сибирская горноравнинная провинция, средняя тайга; ЗБор – Забайкальская горная провинция, средняя тайга; ЗБюж – то же, южная тайга; АСюж — Алтае-Саянская горная провинция, южная тайга; АСлс — Алтае-Саянская горная провинция, лесостепь; ЯПхш – Япония, Хонсю, хвойно-широколиственные леса; ПЧсуб – Причерноморская провинция, субтропики

самым экорегионы ранжируются по величине фитомассы равновеликих деревьев.

В таблице 2 приводятся схемы кодирования региональных массивов данных о фитомассе деревьев лесообразующих пород Евразии (2.1.—2.11.).

Уравнения для оценки фитомассы деревьев, включающие в качестве независимых переменных диаметр ствола и высоту дерева, а также один из блоков фиктивных переменных, приведённых выше, имеют общий вид:

$$\ln Pi = a_0 + a_1(\ln H) + a_2(\ln H)^2 + a_3(\ln D) +
+ a_4(\ln D)^2 + a_5(\ln D \cdot \ln H) + y(a_i X_i),$$
(1)

где (здесь и далее): Pi — масса i-й фракции дерева в абсолютно сухом состоянии, кг (ствола, ветвей, листвы или хвои, надземная и подземная, соответственно Pst, Pbr, Pf, Pa, Pr).

Поскольку в аллометрической модели константа масштабирования (аллометрическая константа) изменяется по мере увеличения размера дерева [7] и зависимость более корректно описывается функцией Корсуня — Бакмана [8, 9], в аллометрическую модель (1) введены переменные $(\ln H)^2$ и $(\ln D)^2$. Ввиду того, что данных о массе корней существенно меньше, чем о фитомассе надземных фракций, в регрессионное уравнение для корней дополнительно включена в качестве независимой

переменной надземная фитомасса. Тем самым масса корней связывается с надземной фитомассой, но эта связь корректируется влиянием высоты и диаметра ствола:

$$lnPr = a_0 + a_1(lnH) + a_2(lnD) +
+ a_3(lnPa) + Y(a_iX_i).$$
(2)

Поскольку данные фитомассы сосен представлены как из естественных древостоев, так и из культур, в уравнение дополнительно включена бинарная переменная X, кодирующая принадлежность дерева к естественным древостоям (X=0) или культурам (X=1):

$$\ln Pi = a_0 + a_1(\ln H) + a_2(\ln H)^2 + a_3(\ln D) +
+ a_4(\ln D)^2 + a_5(\ln D \cdot \ln H) + a_6 X + y(a_i X_i).$$
(3)

Ввод бинарной переменной в выражение (3) для сосен обусловлен разной морфологией естественных сосняков и культур, особенно на первых этапах их роста.

Результаты исследования. Результаты расчёта уравнений (1) — (3) для лесообразующих пород приведены в таблицах 3 и 4 (4.1.—4.10.). В уравнениях здесь и далее показаны лишь переменные, значимые на уровне вероятности P_{95} и выше. В таблицах R^2 —коэффициент детерминации; SE— стандартная ошибка уравнения.

3. Характеристика уравнений (2) и	(3) для естественных насаждений
и культур двухвойні	ых сосен Евразии

Зависимая			Констан	та и независима	ая переменная		
переменная	a_0	$a_1(\ln H)$	$a_2(\ln H)^2$	a ₃ (lnD)	$a_4(\ln D)^2$	$a_5(\ln D \cdot \ln H)$	a ₆ (lnPa)
ln(Pst), кг	-3,6890	2,0545	-0,2963	0,8358	0,0986	0,1911	_
ln(Pbr), кг	-5,6715	1,6683	-0,6355	1,6969	0,2351	0,1194	_
ln(<i>Pf</i>), кг	-5,1903	0,7538	-0,6874	2,1059	-0,1218	0,5484	
ln(Pa), кг	-3,2080	1,5307	-0,1631	1,2716	0,1799	-0,0429	_
ln(Pr), кг	-0,8373	-0,1659	_	0,1485	_	_	1,0011
	a ₇ X	a_8X_1	a_9X_2	$a_{10}X_{3}$	$a_{11}X_4$	$a_{12}X_{5}$	$a_{13} X_6$
ln(Pst), кг	0,0224	0,0918	-0,2966	-0,2293	0,7375	0,0902	0,0913
ln(Pbr), кг	0,2265	0,3720	0,2449	-0,1857	0,7428	-0,2783	0,3929
ln(<i>Pf</i>), кг	0,4473	0,7490	0,8306	0,3343	-0,6621	0,3130	0,5400
ln(Pa), кг	0,0964	0,1657	-0,1222	-0,1529	0,6043	0,0528	0,1363
ln(Pr), кг	-0,8257	-0,6192	-0,8956	-0,4407	0,1386	-0,9319	-0,5635
	$a_{14}X_{7}$	$a_{15}X_{8}$	$a_{16}X_{9}$	$a_{17}X_{10}$	$a_{18}X_{11}$	$a_{19}X_{12}$	$a_{20}X_{13}$
ln(Pst), кг	-0,0629	-0,1599	0,1206	-0,2532	-0,1719	-0,3290	-0,1511
ln(Pbr), кг	0,4724	0,0446	-0,2091	0,0015	-0,1656	-0,2364	0,6164
ln(<i>Pf</i>), кг	1,0944	0,4177	0,3586	0,4990	0,3100	0,2601	0,3522
ln(Pa), кг	0,3285	-0,0837	0,1056	-0,1525	-0,1188	-0,2887	0,0872
ln(Pr), кг	0,1542	-1,3488	-0,8084	-1,0624	-0,1432	-0,7283	0,1338
	$a_{21}X_{14}$	$a_{22}X_{15}$	$a_{23}X_{16}$	$a_{24}X_{17}$	\mathbb{R}^2	SE	
ln(Pst), кг	-0,2509	-0,2765	-0,0892	0,3149	0,991	0,25	
ln(Pbr), кг	0,5088	-0,3688	0,3093	0,6030	0,957	0,55	
ln(<i>Pf</i>), кг	0,6664	0,2807	0,5017	0,5204	0,931	0,59	
ln(Pa), кг	-0,1177	-0,1944	0,0153	0,3969	0,988	0,29	
ln(Pr), кг	-0,0015	-0,0871	0,1097	0,4118	0,990	0,33	

Для остальных древесных пород выполнен расчёт уравнений (1) и (2), результаты которого даны в таблице 4.

4. Характеристика уравнений (1) и (2) для лесообразующих пород Евразии (кроме сосен) 4.1. Лиственницы

Зависимая				та и независи	имая переме	нная			
переменная	a_0	$a_1(\ln H)$	$a_2(\ln H)^2$	$a_3(\ln D)$	a ₄ (ln	$D)^2$	$a_5(\ln L)$	O·ln <i>H</i>)	$a_6(\ln Pa)$
ln(Pst), кг	-1,8110	-0,6893	0,6115	2,1250	0,16	41	-0,4	934	_
ln(Pbr), кг	-0,5380	-1,1466	-1,5002	1,2242	-1,19	965	3,0	528	_
ln(<i>Pf</i>), кг	-3,5492	1,1774	-1,9580	0,2320	-1,05	580	3,04	405	_
ln(Pa), кг	-0,9083	-0,9365	0,2978	1,9939	-0,07	703	0,09	959	_
ln(Pr), кг	-1,8010	-0,1132	_	0,6267			-	-	0,6769
	a_7X_1	a_8X_2	a_9X_3	$a_{10}X_{4}$	a ₁₁ 2	X_5	a_{12}	X_6	$a_{13} X_7$
ln(Pst), кг	-0,0513	-0,4015	-0,2352	-0,0838	-0,00	086	-0,0	736	0,0127
ln(Pbr), кг	0,1231	0,6671	-0,4311	-0,7047	-0,43	368	-0,2	504	-0,0412
ln(<i>Pf</i>), кг	0,5680	1,0806	0,4948	-0,1657	0,21	53	0,79	951	0,4399
ln(Pa), кг	-0,0417	-0,1957	-0,2308	-0,1593	-0,05	551	-0,0302		0,0860
ln(Pr), кг	-1,4084	-0,1514	-0,5138	-0,5060	0,01	12	-0,0	734	0,1976
	$a_{14} X_8$	$a_{15}X_{9}$	$a_{16}X_{10}$	$a_{17}X_{11}$	$a_{18}X_{12}$	a ₁₉	X_{13}	\mathbb{R}^2	SE
ln(Pst), кг	0,2044	-0,0738	-0,0054	-0,1319	-0,3556	-0,0	803	0,992	0,18
ln(Pbr), кг	-0,5444	-0,4648	-0,2909	-0,6420	-0,5336	-0,4	936	0,908	0,53
ln(<i>Pf</i>), кг	0,3065	0,2795	0,1629	-0,2173	0,9563	-0,1	630	0,903	0,46
ln(Pa), кг	0,1263	-0,0870	-0,0242	-0,1993	-0,3449	-0,1	420	0,991	0,17
ln(Pr), кг	0,3491	0,3252	1,3740	0,6654	0,6617	0,4	690	0,949	0,46

4.2. ЕЛИ	4.	2.	Ели
----------	----	----	-----

4.2. ЕЛИ											
Зависимая			Конст	анта и незаві	исимая перем	иенная					
переменная	a_0	$a_1(\ln H)$	$a_2(\ln H)^2$	$a_3(\ln D)$	$a_4(\ln D)^2$	$a_5(\ln D \cdot \ln H)$	$a_6(\ln Pa)$	a_7X_1			
ln(Pst), кг	-1,5825	-	1,0777	1,1507	0,8585	-1,6076	-	-0,1219			
ln(Pbr), кг	-2,3973	-	0,3456	1,0454	0,6754	-0,8323	-	0,2325			
ln(<i>Pf</i>), кг	-1,9283	0,2959	-0,3642	0,6811	0,1711	0,3436	-	0,0120			
ln(Pa), кг	-0,5079	-0,6070	1,1167	1,4008	0,8830	-1,6516	-	-0,0978			
ln(Pr), кг	-2,0089	-0,0768	-	0,1360	-	-	1,0408	0,3916			
	a_8X_2	a_9X_3	$a_{10}X_4$	$a_{11}X_{5}$	$a_{12}X_{6}$	$a_{13} X_7$	\mathbb{R}^2	SE			
ln(Pst), кг	0,1888	-0,2055	-0,1167	0,2171	0,2039	0,5795	0,992	0,21			
ln(Pbr), кг	0,4092	0,4631	0,1368	0,3460	0,2147	0,9232	0,877	0,60			
ln(<i>Pf</i>), кг	-0,2548	0,2872	-0,4459	0,2841	-0,6338	0,3645	0,910	0,46			
ln(Pa), кг	0,1386	-0,0183	-0,2262	0,2052	0,0608	0,4979	0,986	0,24			
ln(Pr), кг	0,5315	0,3865	0,8125	0,3064	0,3673	0,2822	0,972	0,40			

4.3. Пихты

,												
Зависимая	Константа и независимая переменная											
переменная	a_0	a ₁ (lnH)	$a_2(\ln H)^2$	a ₃ (lnD)	$a_4(\ln D)^2$	$a_5(\ln D \cdot \ln H)$	$a_6(\ln Pa)$					
ln(Pst), кг	-2,8766	2,0012	0,9513	0,3330	1,2636	-2,1284	_					
ln(Pbr), кг	-3,0409	1,5502	1,3283	0,8008	2,0928	-3,5482	_					
ln(<i>Pf</i>), кг	-2,6597	0,9569	_	0,5874	0,7777	-0,7485	_					
ln(Pa), кг	-1,7903	1,7037	0,8611	0,3671	1,2970	-2,0844	_					
ln(Pr), кг	-2,0653	-0,7469	_	1,1233	_	_	0,8153					
	a_7X_1	a_8X_2	a_9X_3	$a_{10}X_{4}$	$a_{11}X_{5}$	\mathbb{R}^2	SE					
ln(Pst), кг	-0,1357	-0,8893	-0,0019	-0,1708	0,0643	0,995	0,19					
ln(Pbr), кг	-0,2718	-2,2767	-0,0599	-0,2367	-0,6273	0,968	0,42					
ln(<i>Pf</i>), кг	0,0956	-1,2137	-0,1671	0,0068	-0,0129	0,954	0,43					
ln(Pa), кг	-0,1399	-1,1991	-0,0496	-0,1629	-0,0623	0,992	0,22					
ln(Pr), кг	0,1233	-0,1524	0,2489	0,1907	0,3053	0,987	0,27					

4.4. Келры

				. + . IX	сдры					
Зависимая			Константа и независимая переменная							
переменная	a_0	$a_1(\ln H)$	a ₂ (ln <i>H</i>	$I)^2$	$a_3(\ln D)$	$a_4(\ln D)^2$	$a_5(\ln D \cdot \ln H)$	a ₆ (lnPa)		
ln(Pst), кг	-2,7649	1,8622	-0,3999		0,3351	_	0,4846	_		
ln(Pbr), кг	-3,7675	1,9299	-0,37	34	0,7687	_	0,2017	_		
ln(<i>Pf</i>), кг	-3,3510	1,2725	-0,25	92	0,9429	_	0,1084	_		
ln(Pa), кг	-1,9274	1,5808	-0,33	48	0,6276	_	0,3481	_		
ln(Pr), кг	0,4333	-1,2002	_		_	_	_	1,2556		
	a_7X_1	a ₈ y	ζ_2		\mathbb{R}^2	SE				
ln(Pst), кг	0,2503	0,32	.52		0,991	0,30				
ln(Pbr), кг	0,3078	0,39	85		0,955	0,63				
ln(<i>Pf</i>), кг	0,7505	0,50	62		0,940	0,55				
ln(Pa), кг	0,2829	0,29	68		0,986	0,33				
ln(Pr), кг	-1,3898	0,08	887		0,996	0,17				

4.5. Берёзы

Зависимая			Константа і	и независимая	переменная		
переменная	a_0	$a_1(\ln H)$	$a_2(\ln H)^2$	a ₃ (lnD)	$a_4(\ln D)^2$	$a_5(\ln D \cdot \ln H)$	$a_6(\ln Pa)$
ln(Pst), кг	-2,8338	1,2639	-0,2003	0,9009	-0,0670	0,4320	_
ln(Pbr), кг	-2,4735	0,4290	-0,9885	0,3627	-0,5885	1,9908	_
ln(<i>Pf</i>), кг	-2,9630	0,0458	-1,1086	0,2154	-0,8435	2,3199	_
ln(Pa), кг	-2,4085	0,8589	-0,1019	1,0826	-0,0231	0,3463	_
ln(Pr), кг	-1,0749	-0,5953	_	0,9772	_	_	0,7501
	a_7X_1	a_8X_2	a_9X_3	$a_{10}X_{4}$	$a_{11}X_{5}$	$a_{12}X_{6}$	$a_{13} X_7$
ln(Pst), кг	-0,1490	-0,2636	-0,1654	-0,1473	0,0906	-0,2369	0,1191
ln(Pbr), кг	-0,4457	-0,6821	-0,7716	-0,3831	-0,2403	0,3094	-0,1075
ln(<i>Pf</i>), кг	0,4098	0,4104	0,0348	0,5098	0,4632	0,9726	0,1971
ln(Pa), кг	-0,1566	-0,2446	-0,2700	-0,2237	0,0796	-0,0774	0,0623
ln(Pr), кг	-0,3712	-0,4212	-0,4883	-0,2095	-0,1441	-0,8753	-0,6396
	$a_{14}X_{8}$	$a_{15}X_{9}$	$a_{16}X_{10}$	$a_{17}X_{11}$	$a_{18}X_{12}$	\mathbb{R}^2	SE
ln(Pst), кг	0,0654	0,0491	-0,1143	-0,1435	-0,0309	0,993	0,16
ln(Pbr), кг	0,4078	-0,3307	-0,1423	-0,1111	-0,3056	0,944	0,48
ln(<i>Pf</i>), кг	0,5117	-0,3736	0,3486	0,0672	-0,2596	0,913	0,46
ln(Pa), кг	0,1042	-0,0296	0,0058	-0,1110	-0,0828	0,980	0,28
ln(Pr), кг	-0,1746	-0,3000	-0,2279	-0,2299	0,0678	0,983	0,28

4.6. Осины и тополя

Зависимая			Константа	и независимая	переменная		
переменная	a_0	a ₁ (lnH)	$a_2(\ln H)^2$	a ₃ (lnD)	$a_4(\ln D)^2$	$a_5(\ln D \cdot \ln H)$	a ₆ (lnPa)
ln(Pst), кг	-2,0058	-0,3269	0,4003	1,8013	0,1436	-0,2618	_
ln(Pbr), кг	-3,2301	0,3180	-1,0601	1,5883	-0,3806	1,4701	-
ln(<i>Pf</i>), кг	-1,5465	-1,6591	-0,8395	1,9750	-0,7833	1,8430	_
ln(Pa), кг	-0,8703	-1,4816	0,6450	2,4799	0,1888	-0,5062	_
ln(Pr), кг	-0,6357	-0,3145	_	_	_	_	0,9808
	a_7X_1	a_8X_2	a_9X_3	$a_{10}X_{4}$	$a_{11}X_{5}$	$a_{12}X_{6}$	$a_{13} X_7$
ln(Pst), кг	-0,1591	0,0050	-0,1837	-0,0857	-0,2120	-0,1249	-0,1281
ln(Pbr), кг	0,0603	0,2632	0,0370	-0,1278	-0,1447	0,0286	0,0687
ln(<i>Pf</i>), кг	-0,0567	0,1302	-0,1218	-0,2438	-0,4550	-0,3153	0,1742
ln(Pa), кг	-0,1349	0,0492	-0,1329	-0,0722	-0,2253	-0,0957	-0,0953
ln(Pr), кг	-0,1254	0,5937	0,0046	0,0560	0,4688	0,1287	-1,2185
	$a_{14}X_{8}$	$a_{15}X_{9}$	R ²	SE			
ln(Pst), кг	-0,1374	-0,0993	0,994	0,14			
ln(Pbr), кг	0,0166	0,3797	0,955	0,42			
ln(<i>Pf</i>), кг	-0,3493	-0,1037	0,919	0,44			
ln(Pa), кг	-0,1211	-0,0299	0,993	0,16			
ln(<i>Pr</i>), кг	-0,0216	0,0543	0,973	0,40			

4.7. Липы

11/1 411111111										
Зависимая			Константа	и независи	мая пе	ремен	ная			
переменная	a_0	a ₁ (lnH)	$a_1(\ln H)$ $a_2(\ln H)^2$		a ₃ (lnD)		$a_4(\ln D)^2$		ln <i>D</i> ·ln <i>H</i>)	$a_6(\ln Pa)$
ln(Pst), кг	-3,6924	1,0153	_	1,670	6708 -		_	0,0600		_
ln(Pbr), кг	2,1265	-2,2223	_	0,329	97		_	(0,7552	_
ln(<i>Pf</i>), кг	-3,5304	-0,7370	_	2,240	80		_	(0,0588	_
ln(Pa), кг	-1,9163	0,3934	_	1,324	47		_	(0,2093	_
ln(Pr), кг	0,7954	-1,6087	_	_			_		_	1,3616
	a_7X_1	a_8X_2	a_9X_3	$a_{10}X_4$	a ₁₁	X_5	$a_{12}X$	6	\mathbb{R}^2	SE
ln(Pst), кг	-0,0744	0,0702	-0,0044	-0,0676	0,2	329	0,155	57	0,983	0,18
ln(Pbr), кг	-0,5395	-0,3468	-1,4490	-0,6786	-0,1	081	-0,23	12	0,800	0,57
ln(<i>Pf</i>), кг	-0,6188	-0,7256	1,0274	-0,8997	0,1	322	-0,483	51	0,796	0,57
ln(Pa), кг	-0,1859	-0,2365	-0,1280	-0,1743	0,3	402	0,074	14	0,977	0,20
ln(Pr), кг	1,0767	1,0533	1,6137	0,8808	1,2	553	0,735	52	0,986	0,32

4.8 Дубы

не дред										
Зависимая			Констан	та и	независ	имая пе	ременная			
переменная	a_0	$a_1(\ln H)$	$a_2(\ln D)$		a ₃ (lnD	·ln <i>H</i>)	$a_4(\ln Pa)$	a ₅ X ₁	a_6X_2	
ln(Pst), кг	-2,1989	0,4291	1,701	5	0,1037		_	0,1100	-0,2097	
ln(Pbr), кг	-2,6746	-1,3204	2,956	7	0,10	76	_	0,4258	0,0509	
ln(Pf), кг	-2,7996	-1,5672	2 3,0163		-0,0589		_	0,7051	0,0911	
ln(Pa), кг	-1,6047	0,0383	3 1,9695		0,0994		_	0,1551	-0,1898	
$ln(Pr)$, $\kappa\Gamma$	2,0114	-1,4417	_		_		1,1303	0,1771	-0,3587	
	a_7X_3	a_8X_4	a_9X_5		$a_{10}X_{6}$	a ₁₁ X ₇	$a_{12}X_{8}$	\mathbb{R}^2	SE	
ln(Pst), кг	0,0347	0,1158	-0,2472		0,0811	0,2089	9 -0,1174	0,997	0,14	
ln(Pbr), кг	0,4220	0,0425	0,0911		0,1426	-1,930	8 0,3072	0,972	0,41	
ln(Pf), кг	0,2639	0,1731	-0,0706		0,2468	2,8010	0,4540	0,971	0,36	
ln(Pa), кг	0,0863	0,0725	-0,2285		0,0597	0,3442	2 -0,0141	0,997	0,15	
ln(Pr), кг	-0,5365	-0,4618	-0,4919		0,3770	0,0610	6 -0,5804	0,977	0,30	

4.9. Ясени

Зависимая		Констан	та и независимая пер	ременная	
переменная	a_0	$a_1(\ln H)$	$a_2(\ln D)$	$a_3(\ln D \cdot \ln H)$	a ₄ (lnPa)
ln(Pst), кг	-2,6643	0,8022	1,4275	0,1256	_
ln(Pbr), кг	3,8194	-3,8566	-0,0741	1,1830	_
ln(<i>Pf</i>), кг	2,1187	-3,7204	1,1360	0,6942	_
ln(Pa), кг	-1,2531	0,1088	1,1752	0,2913	_
ln(Pr), кг	1,0392	-0,6809	_	_	0,9205
	a_5X_1	a_6X_2	a_7X_3	\mathbb{R}^2	SE
ln(Pst), кг	-0,3338	-0,0077	0,0398	0,999	0,11
ln(Pbr), кг	-0,7094	-0,4986	0,8560	0,950	0,66
ln(<i>Pf</i>), кг	0,2364	-0,2848	0,9014	0,905	0,63
ln(Pa), кг	-0,2454	0,0384	0,2933	0,998	0,11
ln(Pr), кг	-0,5179	-0,7452	-0,5045	0,997	0,14

4 1		TZ	••	
4	11)	K T	іён	LI

Зависимая переменная	Константа и независимая переменная									
	a_0 $a_1(\ln H)$		a ₂ (ln <i>D</i>)		a ₃ (lnD·lnH)		$a_4(\ln Pa)$			
ln(Pst), кг	-3,2086	0,9689	0,9689		1,8050		0,0242	_		
ln(Pbr), кг	-3,4762	-1,1194		4,0409		-0,2313		_		
ln(<i>Pf</i>), кг	-2,7701	-1,6265	,	3,4130		-0,2345		_		
ln(Pa), кг	-2,4851	0,83		2,1317		0,0042		_		
	a_5X_1	a_6X_2		a_7X_3	a_8X_4	4	R ²	SE		
ln(Pst), кг	-0,3043	-0,0688	-0	,2091	-0,0464		0,996	0,15		
ln(Pbr), кг	0,3102	0,1242	0,	,1879	0,235	57	0,976	0,40		
ln(<i>Pf</i>), кг	1,4171	0,8259	0,	,7150	0,555	52	0,976	0,25		
ln(Pa), кг	-0,1393	0,0077	0,	,0049	0,028	33	0,997	0,13		

Вывод. Сформированная база данных о фитомассе деревьев лесообразующих пород Евразии дала возможность впервые разработать региональные регрессионные модели для оценки структуры фитомассы деревьев лесообразующих древесных пород Евразии по диаметру ствола и высоте дерева. Предложенная серия подеревных региональных моделей позволяет оценивать фитомассу на 1 га лесопокрытой площади по данным измерений диаметра и высоты дерева. Результаты исследования могут быть использованы в менеджменте биосферных функций лесов, при осуществлении мероприятий по стабилизации климата, а также при валидации результатов имитационных экспериментов по оценке углерододепонирующей способности лесов.

Литература

 Усольцев В.А. Биологическая продуктивность лесообразующих пород в климатических градиентах Евразии (к менеджменту биосферных функций лесов). Екатеринбург: Уральский государственный лесотехнический университет, 2016. 384 с.

- 2. Алексеев А.С. Устойчивое управление лесным хозяйством: научные основы и концепции / А.С. Алексеев, С. Келломяки, А.В. Любимов, Х. Паюйя, В.М. Паянский-Гвоздев, А.П. Петров, О. Саастамойнен, А.В. Селиховкин, С.Н. Сеннов, В.А. Соловьев, С.В. Тетюхин. СПб.: СПбГЛТА, 1998. 222 с.
- Правоприменение и управление в лесном секторе России: взгляд гражданского общества / В. Тепляков, К. Сан-Лоран, К. Пахорукова, Н. Шматков. М.: Программа МСОП, 2005. 120 с.
- Teplyakov V., Saint-Laurent C., Pakhorukova K., Shmatkov N. (eds.). The Beginning of the ENA FLEG Process in Russia: Civil Society Insights. Moscow: IUCN, 2005. 116 p.
- Усольцев В.А. Фитомасса модельных деревьев лесообразующих пород Евразии: база данных, климатически обусловленная география, таксационные нормативы. Екатеринбург: Урал. гос. лесотехн. ун-т. 2016. 336 с.
- 6. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М.: Статистика, 1973. 392 с.
- Poorter H., Jagodzinski A.M., Ruiz-Peinado R., Kuyah S., Luo Y., Oleksyn J., Usoltsev V.A., Buckley T.N., Reich P.B., Sack L. How does biomass allocation change with size and differ among species? An analysis for 1200 plant species from five continents // New Phytologist. 2015. Vol. 208. Issue 3. P. 736-749 (http://onlinelibrary.wiley.com/doi/10.1111/nph.13571/epdf).
- Korsun F. Zivot normalniho porostu ve vzorcich // Lesn. Proce. 1935. Vol. 14. S. 335–342.
- Backman G. Drei Wachstumsfunktionen (Verhulst's, Gompertz', Backman's.) // Wilhelm Roux'Arch. Entwicklungsmechanik der Organismen. 1938. No 138. S. 37–58.